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The development of a three-dimensional water boundary layer along a heated longi- 
tudinal horizontal cylinder is studied by a finite-difference method. The secondary 
flow is induced in an otherwise axially symmetric laminar boundary layer by the 
buoyancy force. The development of the boundary layer is studied under two heating 
conditions: constant wall heat flux and constant wall temperature. In  general, close to 
the leading edge, the magnitude of the secondary flow is small and the boundary-layer 
flow is forced-convection dominant. The secondary flow grows downstream, and the 
interaction of the free and forced convection becomes important. The flow becomes 
free-convection dominant further downstream. The temperature-dependent viscosity 
of water has the effect of thinning the heated boundary layer. The buoyancy effect and 
the variable viscosity effect enhance each other over the lower part of the cylinder and 
compete with each other over the upper part of the cylinder. The numerical results 
compare with the forced convection dominant asymptotic solution and indicate that 
the asymptotic solution is only valid when x < O.la/d. Since the boundary layer is thin 
compared with the radius of the cylinder, the transverse curvature effect is small and 
can be neglected. Therefore, the solution can be applied to the entrance region of 
heated straight pipes as the zeroth-order boundary-layer flbw. 

1. Introduction 
Axisymmetric forced-convection laminar boundary layers exist on various engi- 

neering apparatus and have been extensively studied for the past half century. The 
effects of buoyancy-induced secondary flow, which may destroy the axisymmetry of 
the laminar boundary layer over an axisymmetric body, has received little attention. 
Recently, some perturbation solutions have been obtained for both external flow 
(longitudinal cylinders or cones) by Yao & Catton (1977, 1978) and internal flow (pipe 
flow) by Yao (1978a, b ) .  Although the perturbation solutions are only valid in a narrow 
region close to the leading edge of an axisymmetric body (or the entry region of a pipe), 
the results indicate that the classical Nusselt-number correlations, which do not con- 
sider the asymmetric secondary-flow effect, can be in large error. However, the size of 
upstream region where the perturbation solution can be applied is unknown. The 
downstream solution, where the secondary flow cannot be treated as a perturbed 
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quantity, is needed for many practical applications. This paper gives the downstream 
numerical solution. 

The temperature-dependent viscosity of water provides a mechanism by which 
laminar flow can be maintained by wall heating. The stabilization results because the 
velocity profiles under the surface heating inhibit the amplification of Tollmien- 
Schlichting instability waves and thus retard boundary-layer transition. This has been 
verified by the experiments of laminar pipe flow (Barker & Jennings, 1977). Currently, 
very little three-dimensional stability theory is available. Before any such theory can 
be developed, accurate three-dimensional velocity profiles are required. In this paper a 
finite-difference method is used to solve the three-dimensional boundary-layer equa- 
tions. The results will provide three-dimensional velocity to flow stability analyses as 
well as heat transfer correlations. 

The physical model considered is a semi-infinite cylinder of radius a, which is aligned 
with its axis parallel to a uniform free stream and normal to the direction of gravity. 
The free stream is assumed to have a velocity u, and temperature T,. Two surface 
heating conditions are studied. One is the constant surface temperature Tw(Tw > T,). 
The other is constant surface heat flux, qw. For water flow in the range of 4.4 and 45 "C, 
the principal departure from constant property flow is due to viscosity variation. The 
empirical correlation of water viscosity used in this study will be described in the text. 
Further, within this temperature range, the density variation is small and the Bous- 
sinesq approximation for the buoyancy force is used. 

The boundary-layer thickness is shown to be proportional to a Gr-4 (constant wall 
temperature) or a Qr-4 (constant wall heat flux), where Gr and Br are Grashof numbers 
and are defined in equations (2) and (8), respectively. Since the boundary layer is thin 
for a large Grashof number, the transverse curvature effect is higher order. Therefore, 
the lowest-order boundary-layer solutions are identical for ext(erna1 and internal 
flows; the solution presented in the paper can then be taken as the zeroth-order bound- 
ary-layer flow in the entrance region of heated straight pipes. It has been recognized 
(see Yao 1978) that there are similarities between the flows in a heated straight pipe 
and in a curved pipe. In the test, we shall point out the similarities. 

A careful comparison of the numerical results with the perturbation solution shows 
they are identical for E 6 0. l a / d  ( B  is defined in equation (2)).  Two solutions, however, 
start to deviate at  5 = O.la/d. This indicates that the perturbation solution is only 
valid within a small distance from the leading edge. The downstream solution is 
uniformly valid from the leading edge; therefore, the composite expansion is not 
necessary for this problem. Similarly, the asymptotic solution of the flow in the entry 
region of a curved pipe (Singh 1974) is valid whenZ(cd/a) is small, where a is the curva- 
ture ratio of curved pipes. 

For x > 1-6a/d,  the fluid is sucked into the boundary layer along the bottom of the 
cylinder; the boundary layer grows drastically along the top of the cylinder. Even- 
tually, the free convection becomes a dominant mode. The buoyancy effect for the 
constant surface heat flux condition is smaller than that for the constant surface 
temperature condition when x is small. Further downstream, the buoyancy effect 
becomes stronger for the constant surface heat flux case. The temperature-dependent 
water viscosity thins the boundary when it is heated. This increases the heat transfer 
rate but decreases the buoyancy effect. 
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x = ?&/a, r = (? -a )  G d / a  the co-ordinates; 

0 = T-T,/AT, AT = T,-T, the temperature; 

Re = u,a/v, 

Gr = pga3(T, - T,)/v2 

the Reynolds number; 

the Grashof number; 
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2. Analysis 
The governing equations for longitudinal flow with variable viscosity on a heated, 

horizontal cylinder are the Boussinesq boundary-layer equations. I n  cylindrical 
co-ordinates, as shown in figure 1,  they are 

au 1 a(?;@ 1 av 
-+I- +=- = 0, ax r a?; r a$ 

-8T EaT -aT a2T 
u-+= -+w- = a-. az r a$ a?; a r 2  

The variables are defined in equations (2) and (8). 
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Here $ is the thermal expansion coefficient and v is the kinematic viscosity. The 
subscript m denotes the quantity associated with the free stream. The longitudinal 
length scale was chosen as ale4 which is derived from the upstream asymptotic solu- 
tion. The asymptotic solution is valid over a distance O(a) from the leading edge where 
the magnitude ofthe secondary boundary layer, O(e) ,  is very small and can be treated 
as a perturbed quantity. However, the asymptotic sylution indicates that the order of 
the secondary boundary layer increases to O(e3) at adistance of O(ale4) from the leading 
edge. Even though the magnitude of the secondary boundary layer is still much smaller 
than that of the longitudinal flow, the interaction between them cannot be ignored. 
This is the reason why the asymptotic solution in the region, X - O(a),  breaks down. 
The co-ordinate normal to the wall has been stretched t o  reflect the fact that the thick- 
ness of the boundary layer in the region X - O(a/eJ) is proportional to aGr-). This 
thickness of the boundary layer in this region is much larger than the boundary-layer 
thickness, O(Re-)),  in the region X - O(a) when e is small. However, it is still very thin 
compared with the radius, a, of the cylinder. Hence, the transverse curvature effect 
can still be neglected. In fact the transverse curvature effect can be demonstrated to 
be the order of Gr-t; but it may become important as the boundary layer grows thick 
further downstream. The axial length scale of the further downstream region may be 
a Re where the thickness of the boundary layer is the same order as the radius of the 
cylinder. The scaling law is somewhat similar to the entry flow in a pipe whose wall 
temperature is held constant (see Yao, 1978b). However, the exact location that the 
transverse curvature effect cannot be ignored can only be found by comparing the 
numerical solution with the further downstream solution which is, unfortunately, not 
available a t  present. 

In  terms of the dimensionless variables in equation (2), equation (1) become 

au av aw -+-+- = 0) 
ax a$ ar 

au au au 

av av av 
ax a# ar 

u-+v-+w- = 

2 = O(s) ,  
ar 

( 3 4  

( 3 4  

N represents the temperature-dependent viscosity of water and is defined the same as 
by Yao & Catton (1978)) and will be briefly summarized later. 

Notice that equation ( 3 4  implies that the pressure gradient normal to the wall is 
negligible. It also is worthy to point out that equations (3) are very similar to the 
boundary-layer equations of an entry flow in curved pipes with the limit that the 
curvature ratio of curved pipes approaches zero (see Yao & Berger 1975). The only 
difference between equations (3) and those for curved pipes is that the body force for 
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heated-pipe flows is the buoyancy force, and that for curved-pipe flows is the centri- 
fugal force. 

For the numerical computation of the boundary layer, it is convenient to use para- 
bolic co-ordinates (see Smith & Clutter 1963; Dwyer 1963). Equations ( 3 )  in 
(x, q = r/(2x)t,+) can be expressed 

The matching conditions between the solutions of the region O(a/s*) and the region 
O(a)  can be easily derived by applying asymptotic matching principles (see Van 
Dyke, 1964) to the asymptotic solution in the region of O(a) .  

For the case of constant wall temperature, they are 

where q = r/(2x)3 is the Blasius variable, and the stream function fo, PI, F2 and 
temperature functions 8,, and G, are defined by Yao & Catton (1977, 1978). 
It is interesting to note that the growth of the boundary-layer thickness along 
the longitudinal direction is proportional to Re-3 in both regions of O ( a )  and 
O ( a / s t ) .  

The boundary conditions resulting from merging the boundary layer with the free 
stream are 

u + l ,  v and B+O as 7 3 ~ 0 .  ( 6 a )  

A t  the wall, the velocity meets the no-slip condition, and the temperature is constant. 
The resulting boundary conditions are 

u = v = w = 0 and 8 = 1 (constant temperature), at q = 0. ( 6 b )  

Along the symmetry line, the conditions are 

= 0,  at 4 = 0. 
au aw a6 

v = o ,  - -  a # - @ = @  
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Values of the dependent variables are required along q5 = 0 to start the numerical 
computation at each x station. The equations that govern the flow along q5 = 0 can be 
obtained by taking the limit of equations (4) according to equation (6c). This gives 

where (7c) is obtained from (4c) by differentiation with respect to $ before taking the 
limit q5 + 0. 

2.2. Constant wall heatJlux 

Dimensionless variables for a constant wall heat flux flow are slightly different from 
those for a constant wall temperature. They were suggested by the upstream asympto- 
tic solution (see Yao 1978a, b )  and are 

u = Flu,, v = %/urn&, w = i$%t/u,.E* the velocities; 

x = ZEf/a, r = F - a&%*/a the co-ordinates; 

8 = q,,, = T - T,/AF, AT = ka&/aq, the temperature; 

Re = u,a/v the Reynolds number; 

= pga4qw/kv2 the Grashof number; 

Pr = v,/a the Prandtl number; 

N = v/va the viscosity ratio; 

E = &/Re#. 

Use of the dimensionless parameters given by equations ( 8 )  in equations (1)  results in 
equations (3). In  other words, the dimensionless equations of motion and energy are 
the same for both constant wall temperature and constant wall heat flux flows. How- 
ever, the physical meanings are not identical. 

The boundary conditions for constant wall heat flux are essentially equations (6a), 
(6 b)  and (6 c )  with 

( 6 4  
ae - = - ( 2 ~ ) )  at 7 = 0 
a7 

replacing 8 = 1 in equation ( 6 b ) .  
The matching conditions between the solutions of the upstream region O(a) and the 

downstream region O(a/s%) can be derived from the upstream asymptotic solution. 
They are 

u1 = fk(7) + (2x)W;(7) cos $ + . . . , 
2rl = ( ~ x ) t ~ L ( q )  sin 4 + . . . , 

e = (244 .  [eo(7) + ( 2 4 t ~ , ( ? j )  cos q5 + ...I. 

( 9 4  

(9b) 

(94 

( 9 4  

( ~ Z ) * W ,  = (dk(7) - f o ( ~ ) )  + ( 2 x ) % ( ~ % ( q )  - 6 F l ( ~ )  -p2(7)) COS+ + 
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The stream functions,f,, Fl and F2 and the temperature functions 8, and G, are 
defined in Yao (1978) .  The upstream solutions ( 9 )  are for constant property fluid 
only. A method to extend the solutions to variable property flow will be described 
below. 

On examining the upstream conditions (5) and ( 9 ) ,  one finds that the upstream 
conditions a t  x = 0 are simply Blasius velocity profiles with energy transfer. D y e r  
(1968) showed that the upstream conditions can also be obtained by solving the 
limiting equations ( 3 )  as x +  0 .  They are 

au a 
a7 a7 

? ) - - - - [ (22 ) iw]  = 0, 

aU ;(ivg) + [ q u - ( z X ) + w ] -  = 0,  

; (iv$) + [qu - (2X)+W] - = 0, 

87 

av 
a7 

a2e ae 
87 

- + Pr[Tu - (Zx)+w] - = 0. 

It is obvious that the solution of equations (10) is the Blasius solution with heat 
transfer which is corresponding to (5) for constant wall temperature and ( 9 )  for con- 
stant wall heat flux a t  x = 0. This indicates that the upstream asymptotic solution is 
included in the downstream solution presented in this paper. Numerical computation 
is started by solving (10) at  2 = 0. The details are described in the following section. 
Similar interpretation is true for the entry flow in curved pipes, i.e. the upstream 
asymptotic solution (Singh 1974) is included in the downstream solution (Yao & 
Berger 1975). However, the solution given by Yao & Berger is an approximate integral 
solution. No direct comparison between the two solutions is possible. 

3. Numerical method 
We begin discussion of the numerical treatment of the problem by observing that 

all of equations (4) are of the same form except for the continuity equation ( 4 a ) .  
Equations ( 4  b ,  c,  d )  are nonlinear parabolic equations which, although corresponding 
to steady state, may be,viewed as evolution equations in the streamwise direction (and, 
in fact, also azimuthally). Thus, it  can be expected that some care must be exercised 
in choosing, a difference approximation in order to avoid numerical instabilities. The 
difference scheme employed for equations ( 4 b ,  c ,  d )  is fully implicit, and although 
unconditional stability has not been proved, results of rather extensive numerical 
experiments indicate stability over the entire range of practical (in terms of storage 
and computation time) meshes. 

Equation ( 1  1 )  is the form of the difference approximation for equations ( 4 b ,  c ,  d )  
with equations ( 1 2 )  and (13 )  providing the explicit information needed to construct 
the coefficients A(i ,  m), i = 1 , 2 , 3 ,  and B(m); 
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,&%l+l v p l  

A(2,  m) = - (b, + bm+l)npz+l - ( 2 x ) .  ( A [ T ) ~  (x + T) , 

0, 

- (2x) 6 sin q5, 
for equations ( 4 b )  and ( 4 d ) ,  

H = {  
for equation ( 4 c ) ,  

for equations ( 4 b )  and ( 4 c )  

for equation ( 4 d ) .  

N ( 6 ) ,  

In equation ( 1  l) ,  the grid function ($23 corresponds to any of u, v, or 6, according to 
the step of the computational algorithm (see below) being calculated. The m subscripts 
label the 7 direction of the mesh while the n superscripts correspond to the x direction; 
and the 1 superscripts denote the q5 direction. The differencing is first-order in the x 
direction and second order in the 7 and 4 directions. We note that the mesh star for the 
discretization used here is very similar to that given by Keller (1975). However, we 
retain the second-order form of the original differential equations ( 4 )  rather than 
replace them by an equivalent first-order system. As a consequence, our second-order 
centred differences lead to skipping over mesh points in first derivative approxima- 
tions as is typical for centred difference approximations. But this is generally of con- 
cern only in regions of recirculting flow. The continuity equation ( 4 a )  can be rewritten 
as 

where i.5 = (2x ) )w .  The right-hand side of equation (14 )  is independent of W except 
implicitly through coupling with u and v. Thus, if a t  any grid point ( x ,  #), u and v have 
already been determined for all [T, we have 

di5 
- = 9(7), W ( 0 )  = 0 
d7 

which is just an ordinary differential equation initial value problem. Because the 
equations for u, v, and 6 have been approximated with second-order differencing in 7, 
we use the trapezoidal rule to integrate ( 1 4 ) .  Hence, the difference equation is 

(15) 
- 
Wm+1 = w, + (W7) [F(Trn) + 9(7?%+1)1- 

The derivatives appearing in .F are approximated consistently with the differencing 
used in the respective directions in the difference equations (1 1). 

As noted above, the numerical scheme has undergone thorough testing to verify 
stability and convergence rates (of the grid functions) and to determine grid spacing 
requirements for a prescribed level of accuracy. Stability and theoretical convergence 
rates have been completely confirmed. 
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for the 
results reported in the next section. This leads to roughly two decimal place accuracy 
(the actual accuracy is somewhat better due to the form of the convergence criterion). 
The error is bounded by 2 per cent, except along the top of the cylinder where the 
error is slightly larger and can be as much as 5 % due to the ever-increasing magnitude 
of normal velocity. The numerical experiments indicate that the following uniform 
mesh leads to truncation errors which are smaller than Ax = 0.05, A7 = 0.1, and 
A$ = in. The mesh used to obtain the results reported in the next section was some- 
what finer than that needed to produce the desired accuracy: A7 = 0.04, A# = An, 
and variable Ax, gradually varying from 0.005 near the leading edge (until x = 0.2) to 
0.05 from x = 0.6 to x = 2.0. 

Equations (4b,c ,d)  are nonlinear but as often seems to be the case for boundary 
layer equations (at least those expressed in similarity variable form), even the simplest 
form of linearization proved quite adequate for their solution. In  particular, the 
coefficients of equation (1 1) are evaluated at  the previous iteration, or at  the previous 
x step for the first iteration of a new step in the x direction. For the level of accuracy 
to which computations were carried, between two and ten iterations were required; 
however, this did not increase significantly even for error tolerances of E = Con- 
vergence appears to be approximately linear with one decimal place of accuracy being 
gained with each iteration beyond a certain point in the iterative sequence. An excep- 
t,ion to this occurs in the region where the vertical velocity begins to increase rapidly in 
the downstream direction (see figure 8). Beginning a t  approximately x = 0.85 at least 
ten iterations were required a t  $ = 180" for B = 10-2. 

Calculations are started a t  x = 0 where the flow is axisymmetric. The corresponding 
initial conditions are obtained by solving the difference analogues of equations (10). To 
advance to the next downstream x location, first the symmetry line equations (7) are 
solved a t  the new x location. It is important to observe that these equations depend 
only on x and 7, provided we differentiate the #-momentum equation with respect to q5, 
and solve for av/a#, rather than for v. (Since v = 0 a t  # = 0, it is only that is of 
interest anyway.) After the symmetry line conditions have been found, calculations 
proceed in the azimuthal direction using the difference equation (11) .  At each (x, 9) 
mesh point, a two-point boundary value problem is solved in the 7 direction. This 
continues around the cylinder up to, and including Q, = 180". Numerical results show 
that the symmetry condition along $ = 180" is satisfied automatically due to the 
symmetric form of the buoyancy force which is proportional to sin #; see equation (4c). 

Finally, we point out that the system of difference equations (1 1) corresponding to 
u, v and 8 is decomposed and solved blockwise. This reduces the storage requirement for 
the matrix of coefficients for the difference equations and in addition, the complexity 
of the solution algorithm is decreased. In particular, each separate block (associated 
with one of u, v ,  or 0) results in a tridiagonal system which can be stored in less than 4M 
storage locations where M is the number of 7-grid points. Moreover, each such system 
can be solved in O ( M )  arithmetic operations using, for example, tridiagonal Gaussian 
elimination. 

Algorithm: Assumej- 1 iterations have been completed. Then for the j th  iteration, 

evaluate A(i ,  m) and B(m). 

It was decided to employ an iteration convergence tolerance, B = 

The computational algorithm at each (x - 6) location is the following. 

(1) Solve equation (1 1) with {@zz) = {uzz) v, w ,  and 8 from the previous iteration to 
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(2) Solve equation (1 1) with {$zz} = {v$} using w, 8 from the previous iteration and 

(3) Solve equation (16) for (wzz} using u,v from steps 1 and 2, respectively. 
(4) Solve equation (1 1) with ($2;") = {8$} using u, v, and w from the preceding three 

u from step 1. 

steps. 
( 5 )  Test convergence using {max Jug) - u%-l)I + max - v2-l) I 

rlm rlm 

+ max I wz) - wg-l) I + max I eg) - Og-1) I} < E, 
rlm 

where ?ln,e[O, 7max], and for results presented below, vmax = 10. 
(6) If convergence is achieved, proceed to next q5 location; if not, incrementj and 

go to step 1. 

4. ResuIt and discussion 
Two surface heating conditions are computed : the constant surface temperature 

and the constant surface heat flux. The model of the water viscosity ratio is specified, 
before the solutions are presented. It can be shown that the viscosity of water (see 
Yao & Catton 1978) in the range of temperature 4.4 "C and 45 "C can be approximated 
bY 

' l + a A T 8 ,  (16) r -7 -  
where a = 0.0272. 

mated by 
The Prandtl number of water in the same range of temperature can be approxi- 

Pr = 455/(32 + 1.8 T!), (17) 

where T, is in "C. The illustrative calculations described below are performed using a 
value of Pr = 8. This value is large enough to ensure that a small increase of Pr does 
not cause much change of the numerical results. The conditions of overheating are 
selected for a A T  = 0.5 and 1.0 which correspond to A T  = 18.38 "C and 36.76 "C. 

4.1. Velocity distribution 
The axial velocity profile at x = 0 is plotted in figure 2. The diminution of water vis- 
cosity by heating makes the velocity profile fuller a t  a higher heating level. For the 
condition of constant surface heat flux, the fluid temperature at  x = 0, equals the 
free-stream temperature, i.e. 8 = 0. Therefore, the velocity profile is simply a Blasius 
profile which coincides with that of a = 0 (constant water viscosity). 

Downstream from the leading edge, say x = 1, the axial velocity profile developes to 
accomodate the secondary flow effect in order to satisfy the mass conservation. The 
velocity profile becomes fuller, figure 3, and the boundary layer is thinned, figure 4, 
by the secondary flow along the lower surface of the cylinder. The fluid, which is carried 
along the cylinder by the buoyancy force, accumulates in the neighbourhood of the top 
of the cylinder. This thickens the boundary layer and decreases the curvature of the 
velocity profile. The buoyancy force seems proportional to the total heat input. For the 
case of constant wall heat flux, the effect of buoyancy is smaller than that of the con- 
stant wall temperature when xis small. Also, as shown in figures 3 and 4, the boundary 
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layer is thinned owing to the decrease of the water viscosity; and the axial velocity 
profile becomes fuller when the cylinder is heated. The variable viscosity effect can be 
demonstrated clearly by the fact that the displacement thickness of the boundary 
layer has a sharp drop between x = 0 and x = 0.1 for qw = constant; see figure 4. When 
aAT = 0.5, the buoyancy force starts to increase the displacement thickness at x = 0.4. 
When aAT = 1-0, this occurs at x = 0.6. In  general, over the lower part of the cylinder, 
the secondary flow and the variable viscosity enhance each other; over the upper part 
of the cylinder, they compete with each other. The boundary of the enhancing region 
and the competing region starts at  q5 = 90" when x = 0 and increases to larger q5 
downstream. 

It can be shown that the axial shear stress, 7zr can be expressed as 

for both Tw = constant and qw = constant. The normal gradient of the axial velocity 
on the wall, au(O)/aq, is given in figure 5. 

Figure 5 shows that the thinning of the boundary-layer thickness owing to the 
variable viscosity and the secondary-flow effects increases the axial velocity gradient 
normal to  the wall. In  the neighbourhood of q5 = 180°, this gradient drops fast owing 
to the thickening of the boundary layer. For x < 1.5, the effect of the buoyancy force 
for qw = constant is smaller than that of Tw = constant. However, the buoyancy effect 
of qw = constant increases faster downstream than that of T, = constant. This implies 
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-u (qw = constant) 

1 , .o 0;8 0;6 0;4 0;’ 

4 k  

0 0.2 0.4 0.6 0.8 1 .o 
u (T,  = constant) 

FIQURE 3. Axial velocity at x = 1. See figure 2 for the symbols. 

FIQURE 4. Displacement thickness. See figure 2 for the symbols. 
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x (4, = constant) 
1 .s 1 .o 0.5 0 

1.0' 

0.5 

0.1 
0 0.5 1 .o 1.5 

FIGURE 5. Axial velocity gradient along the surface (the lines with dots are for T, = constant). 

that the buoyancy effect for qw = constant can grow larger further downstream than 
that of T, = constant. 

Equations (5a)  and (9a )  indicate that the axial velocity profile is antisymmetric 
with respect to Q = 90". Figures 3 and 5 show that the axial velocity profile gradually 
loses this character for x > 0.1. This implies that the upstream asymptotic solution is 
valid for 3 < 0. lalet  for T, = constant or x < 0. la/e0.4 for qw = constant which agrees 
with what has been found by Yao, Catton & McDonough (1978). This further proves 
that the upstream asymptotic solution is included in the downstream numerical 
solution presented in the paper. 

Typical velocity profiles of the secondary flow are shown in figure 6. The maximum 
secondary flow velocity increases by the variable viscosity. This phenomenon is 
apparently related to the thickness of the boundary layer. It seems that the thinner 
the boundary layer, the larger the secondary flow. In  fact, this phenomenon was 
observed for different Prandtl numbers by Yao & Catton (1977). 

The gradients of the secondary flow velocity normal to the wall are shown in figure 
7. For T, = constant, the gradients are the same for q5 = 45" and 135" when x < 0.1. 
The gradients for q5 = 45" increase faster than those for q5 = 135" further downstream. 
This indicates that the upstream perturbation solution is valid only when x < 0.1. This 
is because the boundary layer is thinned more by the buoyancy force along q5 = 45" 
than along q5 = 135". When qw = constant, the situation is reversed so that the 
gradient along 4 = 135" is larger than that along 4 = 45". This is because the surface 
temperature along q5 = 135" is higher than that along q5 = 45". Thus, along 4 = 135") 
the water viscosity is more diminished and the boundary layer is thinner than along 

Numerical results show that the symmetry condition (v = 0 a t  q5 = 180") where the 
two boundary layer meet is satisfied automatically. No thermal plume (for external 

q5 = 45". 
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v ( 4 w  = constant) 

0.1 

0.1 0-2 0.3 
0 

V (Tw = constant) 

FIGURE 6. Circumferential velocity at $ = 90" and r = 1.5. See figure 2 for the symbols. 

flows) or boundary-layer separation (for pipe flows) is found. This implies that bound- 
ary-layer separation (or thermal plume) which has been found in early experiments 
does not occur in this region but may occur further downstream where the transverse 
curvature effect cannot be ignored. For pipe flows, in particular, the interaction 
between the separated boundary layers and the core flow can be substantial owing to 
the finite flow passage which may completely invalidate the classic asymptotic expan- 
sion solution procedure. Further studies are required in order to elucidate these 
phenomena. 

The normal velocity along the edge of the boundary layer is given in figure 8. The 
distribution is similar to the distribution of the boundary-layer displacement thickness 
given in figure 4. It is interesting to point out that the secondary flow develops along 
the cylinder, and the flow gradually becomes free convection dominated. For x > 1.3, 
the fluid starts to be sucked into the boundary layer along the bottom of the cylinder 
in order to supply enough fluid to maintain the secondary flow. 

4.2. Temperature distribution 

The temperature gradient normal to the wall on the surface of the cylinder is simply 
- ( 2 x ) t  for the case of constant wall heat flux. For the case of constant wall tempera- 
ture, this gradient is presented in figure 9. The gradual increase of - af?/aq over the 
lower part of the cylinder is due to the thinning of the boundary layer by the secondary 
flow; and this effect is enhanced by the variable viscosity effect. On the contrary, the 
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FIGURE 7. Secondary velocity gradient. For T ,  = constant : -, = O , f t ( O )  = 0.4695;----, 
aAT = 0,5,f;(O) = 0-6665;---- ,aAT = l.O,fi(O) = 0.8408.ForgW = constant,fi(O) = 0.4695 
(a values as before). 

FIUURE 8. Normal velocity along the edge of the boundary layer. See figure 2 for the symbols. 
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FIUURE 9. Temperature gradient along the wall for T, = constant. See figure 2 for the symbols. 
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FIGURE 10. Surface temperature distribution. -, a = 0; ---- , uAT = 1.0. 

magnitude of the temperature gradient drops drastically in the neigh bourhood of 
c)  = 180". This is because the boundary layer grows rapidly and the variable-viscosity 
effect delays this process. 

The distribution of the surface temperature €or qw = constant is given in figure 10. 
Along Q = 90" and for x < 0.1, the surface temperature increases proportional to 
2x4. As is shown by the asymptotic solution, the value of G,  in (9d )  is very small when 
Pr is large; the asymmetric distribution of the surface temperature for x < 0.3 cannot 
be shown on the scale of figure 10. However, for x > 0-3, it  is seen that the surface 
temperature along c) = 180" increases faster than along Q = 0" and 90". This is 
because the thickening of the boundary layer decreases the heat-transfer rate along 
the top of the cylinder. The variable viscosity degrades this effect along the top and 
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FIGURE 11. Total heat flux. See figure 2 for the symbols. 

enhances i t  along the bottom of the cylinder. The case of aAl’ = 0.5 is not shown in 
figure I0 owing to the scale of the figure. 

The total heat flux can be estimated by integrating the temperature gradient shown 
in figure 9 over the surface of the cylinder. This gives 

where K is the thermal conductivity. The Nusselt number can be written 

or 

The values of C, are given in figure i 1 which shows that the variable viscosity of water 
thins the boundary layer and increases the heat-transfer rate. 

The heat-transfer rate a t  x = 0 approaching infinity indicates that x = 0 is a singular 
point. This is also the reason that the temperature of fluid inside the boundary layer at 
x = 0 is not identical to the free stream, but is distributed according to equation (5d) .  
This is physically unrealistic and it has long been recognized that the solution is not 
valid in a small neighbourhood of x = 0. In fact, it has been demonstrated by Yao, 
Tien & Berger (1976) that axial diffusion terms, which have been neglected in the 
analysis, are important in this region. It has been shown that the size of the region is 
proportional to l/PrRe. The consequence of the axial diffusion is to  displace the apex 
of the boundary layer slightly upstream from the leading edge of the cylinder. Since 
the heat transfer rate a t  x = 0 is finite for the case of constant wall heat flux, the fluid 
temperature a t  x = 0 is identical to the free-stream temperature. 
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4.3. Comparison of two cases 

A criterion needs to be defined before the comparison of the flow development and the 
heat-transfer rate for the constant wall temperature and the constant wall heat flux 
can be meaningful. A reasonable criterion can be obtained by comparing the two cases 
on the basis of equal total heat flux. It can be shown that 

07 = C,(x) G9-t 

if the total heat fluxes are equal for the two cases. Equation (20) can be rearranged to 

Since the values of C,, given in figure 11, are always larger than unity when x < 1-5, 
equation (21) shows that e% > €4 under the condition of equal total heat flux. Equation 
(2) and (8) indicate the physical location, 5 of the constant wall heat flux is smaller than 
that of the constant walI temperature for a given dimensionless x. Similar principles 
can be applied to other independent or dependent variables when one wants to com- 
pare the corresponding quantities. 

The results, presented above, clearly show that the buoyancy and the variable 
viscosity of water have substantial effects on the development of the longitudinal 
boundary layer over a heated horizontal cylinder. As long as the cylinder is not short, 
the axisymmetric forced-convection boundary-layer flow does not approximate the 
real physical phenomenon well. Since the boundary-layer development in the entry 
region of a heated horizontal pipe is similar to that of the boundary layer over a 
horizontal cylinder, these two effects are also important, and cannot be neglected in 
estimating the flow resistance and the heat-transfer rate in a heated pipe flow. 
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